$$ \begin{cases}
m&=5.0\ut{kg}\\
k&=425\ut{N/m}\\
x&=6.0\ut{cm}=0.06\ut{m}\\
\mu&=0.25\\
g&=9.80665\ut{m/s^2}
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\LE : \text{Elastic Potential Energy}\\
\TE : \text{Thermal Energy}\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
W_s&=-\Delta \LE\\
&=\LE_i-\LE_f\\
&=-\LE_f\\
&=-\frac{1}{2}kx^2\\
&=-\frac{153}{200}\ut{J}\\
&=-0.765\ut{J}\\
&\approx -0.77\ut{J}
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\Delta \TE&=fS=f\Delta x\\
&=\mu m g\Delta x\\
&=\frac{3g}{40}\\
&=0.73549875\ut{J}\\
&\approx 0.74\ut{J}\\
\end{aligned} $$
$$\ab{c}$$
$$\Sigma \Delta E=0,$$
$$\Delta \KE+\Delta \TE+\Delta \LE=0$$
$$ \begin{aligned}
\Delta \TE+\Delta \LE&=-\Delta \KE\\
\mu m g\Delta x+\frac{1}{2}k\Delta(x^2)&=-\Delta\(\frac{1}{2}m{v}^2\)\\
\mu m g x_f+\frac{1}{2}k{x_f}^2&=-\frac{1}{2}m\Delta\({v}^2\)\\
&=\frac{1}{2}m\({v_i}^2-{v_f}^2\)\\
&=\frac{1}{2}m{v_i}^2\\
\end{aligned} $$
$$ \begin{aligned}
v_i&=\sqrt{\frac{x(2\mu mg+k x)}{m}}\\
&=\frac{1}{10} \sqrt{3 g+\frac{153}{5}}\\
&\approx 0.7747254352349612\ut{m/s}\\
&\approx 0.77\ut{m/s}\\
&\approx 77\ut{cm/s}\\
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-79 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.12 |
---|---|
8-78 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.11 |
8-76 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.11 |
8-75 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.11 |
8-74 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.11 |