$$ \begin{cases}
k&=4200\ut{N/m}\\
U_i&=1.10\ut{J}\\
\end{cases} $$
$$U=\frac{1}{2}kx^2,$$
$$ x_i=\frac{1}{10}\sqrt{\frac{11}{210}}\ut{m} $$
$$x_a=x_i+\Delta x$$
$$ \begin{aligned}
\Delta U &= U_f-U_i\\
&=\frac{1}{2}k{x_a}^2-\frac{1}{2}k{x_i}^2\\
&=\frac{1}{2}k\Delta x(\Delta x+2x_i)\\
&=2\Delta x(\sqrt{2130}+1050\Delta x)
\end{aligned} $$
$$\ab{a}$$
$$\Delta x=+2\ut{cm}$$
$$ \begin{aligned}
\Delta U &=2\Delta x(\sqrt{2130}+1050\Delta x)\\
&=\frac{1}{25} \(21+\sqrt{2310}\)\ut{J}\\
&\approx 2.7624983745116665\ut{J}\\
&\approx 2.76\ut{J}\\
\end{aligned} $$
$$\ab{b}$$
$$\Delta x=-2\ut{cm}$$
$$ \begin{aligned}
\Delta U &=2\Delta x(\sqrt{2130}+1050\Delta x)\\
&=\frac{1}{25} \(21-\sqrt{2310}\)\ut{J}\\
&\approx -1.0824983745116665\ut{J}\\
&\approx -1.08\ut{J}\\
\end{aligned} $$
$$\ab{c}$$
$$\Delta x=-4\ut{cm}$$
$$ \begin{aligned}
\Delta U &=2\Delta x(\sqrt{2130}+1050\Delta x)\\
&=\frac{2}{25} \(42-\sqrt{2310}\)\ut{J}\\
&\approx -0.4849967490233331\ut{J}\\
&\approx -0.485\ut{J}\\
&\approx -485\ut{mJ}\\
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
| 8-66 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.10 |
|---|---|
| 8-65 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.10 |
| 8-63 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.10 |
| 8-62 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |
| 8-61 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |