$$ \begin{cases}
m&=1.88\ut{kg}\\
\theta&=34.0\degree\\
v_0&=24.0\ut{m/s}\\
g&=9.80665\ut{m/s^2}
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
\KE&=\frac{1}{2}m{v}^2,\\
&=\frac{13536}{25}\ut{J}\\
&=541.44\ut{J}\\
&\approx 541\ut{J}\\
\end{aligned} $$
$$\ab{b}$$
$$v_f=v_x=v\cos\theta$$
$$\Sigma \Delta E=0,$$
$$\Delta \KE+\Delta \GE=0$$
$$ \begin{aligned}
\Delta \GE&=-\Delta \KE\\
&=-\Delta \(\frac{1}{2}m{v}^2\)\\
&=-\frac{1}{2}m\Delta \({v}^2\)\\
&=\frac{1}{2}m \({v_i}^2-{v_f}^2\)\\
&=\frac{1}{2}m \bra{{v_i}^2-{(v_i\cos\theta)}^2}\\
&=\frac{1}{2}m{v_i}^2\sin^2\theta\\
&\approx 169.30650303044436\ut{J}\\
&\approx 169\ut{J}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\Delta \GE &=\frac{1}{2}m{v_i}^2\sin^2\theta\\
mg\Delta h&=\frac{1}{2}m{v_i}^2\sin^2\theta\\
\end{aligned} $$
$$ \begin{aligned}
\Delta h&=\frac{{v_i}^2}{2g}\sin^2\theta\\
&\approx 9.183222665039407\ut{m}\\
&\approx 9.18\ut{m}\\
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-61 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |
---|---|
8-60 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |
8-58 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |
8-57 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |
8-56 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |