$$ \put \begin{cases}
0 : \text{Start}\\
1 : \text{2cm move}\\
2 : \text{Spring Neutral Point}\\
\end{cases} $$
$$ \begin{cases}
m&=20\ut{kg}\\
k&=6.0\ut{kN/m}=6.0\times10^3\ut{N/m}\\
x_0&=10\ut{cm}=0.1\ut{m}\\
f&=80\ut{N}\\
\Delta x_{0\rarr 1}&=2\ut{cm}=2\times10^{-2}\ut{m}
\end{cases} $$
$$ d=-\Delta x $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\LE : \text{Elastic Potential Energy}\\
\TE : \text{Thermal Energy}\\
\end{cases} $$
$$\Sigma \Delta E=0,$$
$$\Delta \KE+\Delta \LE+\Delta \TE=0$$
$$ \begin{aligned}
\KE_f&=-\Delta LE-\Delta TE\\
&~~~~~(\because v_0=0)\\
&=-\Delta \(\frac{1}{2}kx^2\)-f d\\
&=-\frac{1}{2}k\Delta \(x^2\)+f \Delta x\\
&=\frac{1}{2}k\({x_0}^2-{x}^2\)+f (x-x_0)\\
\end{aligned} $$
$$\therefore \KE(x\ut{m})=22 + 80 x - 3000 x^2\ut{J}$$
$$\ab{a}$$
$$ \begin{cases}
x_a&=10\ut{cm}-2\ut{cm}\\
&=8\ut{cm}=0.08\ut{m}
\end{cases} $$
$$ \begin{aligned}
\KE(0.08)&=22 + 80 (0.08) - 3000 (0.08)^2\\
&=\frac{46}{5}\ut{J}\\
&=9.2\ut{J}
\end{aligned} $$
$$\ab{b}$$
$$ \begin{cases}
x_b&=0
\end{cases} $$
$$ \begin{aligned}
\KE(0)&=22 + 80 (0) - 3000 (0)^2\\
&=22\ut{J}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\dyx{\KE}&=\dx(22 + 80 x - 3000 x^2)\\
&=80-6000x=0\\
\end{aligned} $$
$$x_{\max}=\frac{1}{75}\ut{m}$$
$$ \begin{aligned}
\KE(x_{\max})&=22 + 80\cdot \(\frac{1}{75}\) - 3000\cdot \(\frac{1}{75}\)^2\\
&=\frac{338}{15}\ut{J}\\
&\approx 22.533333333333335\ut{J}\\
&\approx 23\ut{J}\\
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-38 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.03 |
---|---|
8-37 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.03 |
8-35 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-34 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-33 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |