$$ \begin{cases}
R&=L\\
v_A&=v_0\\
v_D&=0
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\ME : \text{Mechanical Energy}
\end{cases} $$
$$\ab{a}$$
$$\Sigma E_A=\Sigma E_D,$$
$$ \begin{aligned}
\KE_A+\GE_A&=\KE_D+\GE_D\\
\KE_A&=\Delta \GE_{A\rarr D}~~~(\because v_D=0)\\
\end{aligned} $$
$$ \begin{aligned}
\frac{1}{2}m{v_A}^2&=mg\Delta h_{A\rarr D}\\
{v_0}^2&=2gL\\
v_0&=\sqrt{2gL}
\end{aligned} $$
$$\ab{b}$$
$$\Sigma E_A=\Sigma E_B,$$
$$ \begin{aligned}
\KE_A+\GE_A&=\KE_B+\GE_B\\
\KE_B&=\KE_A-\Delta \GE_{A\rarr B}\\
\frac{1}{2}m{v_B}^2&=\frac{1}{2}m{v_A}^2-mg\Delta h_{A\rarr B}\\
\end{aligned} $$
$$ \begin{aligned}
{v_B}^2&={v_A}^2-2g(-L)\\
&={v_0}^2+2gL\\
&=2gL+2gL\\
&=4gL
\end{aligned} $$
$$ \Sigma F_R=\frac{mv^2}{R},$$
$$ \begin{aligned}
T-mg&=\frac{m{v_B}^2}{L}\\
\end{aligned} $$
$$ \begin{aligned}
T&=\frac{m{v_B}^2}{L}+mg\\
&=\frac{m(4gL)}{L}+mg\\
&=5mg\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\Ans&=-\Delta \ME_{A\rarr C}\\
&=-\Delta (\KE+\GE)_{A\rarr C}\\
&=-(\Delta \KE_{A\rarr C}+\Delta \GE_{A\rarr C})\\
&=-\Delta \KE_{A\rarr C}\\
&=-(\KE_C-\KE_A)\\
&=\KE_A\\
&=\frac{1}{2}m{v_0}^2\\
&=\frac{1}{2}m(2gL)\\
&=mgL
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
\Ans&=-\Delta \ME_{A\rarr B}\\
&=-\Delta (\KE+\GE)_{A\rarr B}\\
&=-(\Delta \KE_{A\rarr B}+\Delta \GE_{A\rarr B})\\
&=-(\KE_B-\KE_A)-\Delta \GE_{A\rarr B}\\
&=\KE_A-\Delta \GE_{A\rarr B}\\
&=mgL-mg\Delta h_{A\rarr B}\\
&=mgL-mg(-L)\\
&=2mgL\\
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-25 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
---|---|
8-24 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.01 |
8-22 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.01 |
8-21 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.01 |
8-20 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.01 |