$$ \begin{cases}
m&=1750\ut{kg}\\
\theta&=5.0\degree\\
S&=65\ut{m}\\
v_i&=32\ut{km/h}=\frac{80}{9}\ut{m/s}\\
v_f&=40\ut{km/h}=\frac{100}{9}\ut{m/s}\\
g&=9.80665\ut{m/s^2}
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\ME : \text{Mechanical Energy}
\end{cases} $$
$$ \begin{aligned}
\Delta y &= -S\sin\theta\\
&=-65\sin5\degree\\
\end{aligned} $$
$$\ME=\KE+\GE,$$
$$\ab{a}$$
$$ \begin{aligned}
\Ans&=-\Delta \ME\\
&=-\Delta(\KE+\GE)\\
&=-\Delta \KE-\Delta \GE\\
&=-\Delta \(\frac{1}{2}mv^2\)-\Delta (mgy)\\
&=-\frac{1}{2}m\Delta (v^2)-mg\Delta y\\
&=-\frac{1}{2}m\Delta (v^2)-mg(-S\sin\theta)\\
&=\frac{8750}{9} (117 g \sin5\degree-40)\\
&\approx 58333.90321121774\ut{J}\\
&\approx 5.8\times 10^4\ut{J}\\
&\approx 58\ut{kJ}\\
\end{aligned} $$
$$\ab{b}$$
$$-\Delta \ME = fS,$$
$$ \begin{aligned}
f&= \frac{-\Delta \ME}{S}\\
&= \frac{\frac{8750}{9} (117 g \sin5\degree-40)}{65}\\
&=1750 g \sin5\degree-\frac{70000}{117}\\
&\approx 897.4446647879653\ut{N}\\
&\approx 9.0\times10^2\ut{N}\\
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-21 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.01 |
---|---|
8-20 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.01 |
8-18 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.29 |
8-17 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.29 |
8-16 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.29 |