$$ \begin{cases}
t_0&:\text{Start}\\
t_1&:\text{Max Speed}\\
t_2&:\text{End}\\
\end{cases} $$
$$ \begin{cases}
v_{1}&=11.00\ut{m/s}\\
S_{0\rarr1}&=12.0\ut{m}\\
S_{0\rarr2}&=100\ut{m}
\end{cases} $$
$$\ab{a}$$
$$ S=\frac{1}{2}(v+v_0)t,$$
$$ \begin{aligned}
S_{0\rarr1}&=\frac{1}{2}(v_1+v_0)t_{0\rarr1}\\
&=\frac{1}{2}(11+0)t_{0\rarr1}\\
t_{0\rarr1}&=\frac{2S_{0\rarr1}}{11}\\
\end{aligned} $$
$$ \begin{aligned}
S_{1\rarr2}&=v_1t_{1\rarr2}\\
100-S_{0\rarr1}&=11t_{1\rarr2}\\
t_{1\rarr2}&=\frac{100-S_{0\rarr1}}{11}\\
\end{aligned} $$
$$ \begin{aligned}
\Sigma t&=t_{0\rarr1}+t_{1\rarr2}\\
&=\(\frac{2S_{0\rarr1}}{11}+\frac{100-S_{0\rarr1}}{11}\)\\
&=\frac{S_{0\rarr1}+100}{11}\\
&=\frac{(12)+100}{11}\\
&=\frac{112}{11}\ut{s}\\
&\approx 10.18181818181818\ut{s}\\
&\approx 10.2\ut{s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\Sigma t&=\frac{S_{0\rarr1}+100}{11}\\
9.9&=\frac{S_{0\rarr1}+100}{11}\\
S_{0\rarr1}&=\frac{89}{10}\ut{m}\\
&=8.9\ut{m}\\
\end{aligned} $$
'11판 > 2. 직선운동' 카테고리의 다른 글
2-54 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.18 |
---|---|
2-53 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.18 |
2-51 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.18 |
2-50 할리데이 11판 솔루션 일반물리학 (2) | 2024.01.17 |
2-49 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.17 |