10판/3. 벡터

3-30 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 8. 9. 22:43

{a=(4.0[m])i^+(3.0[m])j^b=(6.0[m])i^+(8.0[m])j^\begin{cases} \vec a=(4.0 \ut{m})\hat i + (-3.0 \ut{m})\hat j\\ \vec b= (6.0\ut{m})\hat i + (8.0\ut{m})\hat j\\ \end{cases}
(a)a=?a=? a=42+(3)2=5.0[m] a=\sqrt{4^2+(-3)^2}=5.0\ut{m}
(b)θa=?\theta_a=? tan1(34)0.64[rad] \tan^{-1}\(\frac{-3}{4}\)\approx-0.64\ut{rad}
(c)b=?b=? b=62+82=10.0[m] b=\sqrt{6^2+8^2}=10.0\ut{m}
(d)θb=?\theta_b=? tan1(86)0.93[rad] \tan^{-1}\(\frac{8}{6}\)\approx0.93\ut{rad}
(e),(f) a+b=(10.0[m])i^+(5.0[m])j^\vec a +\vec b = (10.0 \ut{m})\hat i + (5.0 \ut{m})\hat j
(e)a+b=?\abs{\vec a +\vec b}=? Ans=102+52=55[m]11[m] \Ans=\sqrt{10^2+5^2}=5\sqrt5\ut{m}\approx11\ut{m}
(f)θa+b=?\theta_{\vec a +\vec b}=? Ans=tan1(510)0.464[rad] \Ans=\tan^{-1}\(\frac{5}{10}\)\approx0.464\ut{rad}
(g),(h) ba=(2.0[m])i^+(11.0[m])j^\vec b -\vec a = (2.0 \ut{m})\hat i + (11.0 \ut{m})\hat j
(g)ba=?\abs{\vec b -\vec a}=? Ans=22+112=55[m]11.2[m] \Ans=\sqrt{2^2+11^2}=5\sqrt5\ut{m}\approx11.2\ut{m}
(h)θba=?\theta_{\vec b -\vec a}=? Ans=tan1(112)1.4[rad] \Ans=\tan^{-1}\(\frac{11}{2}\)\approx1.4\ut{rad}
(i),(j) ab=(2.0[m])i^+(11.0[m])j^\vec a -\vec b = (-2.0 \ut{m})\hat i + (-11.0 \ut{m})\hat j
(i)ab=?\abs{\vec a -\vec b}=? Ans=(2)2+(11)2=55[m]11.2[m] \Ans=\sqrt{(-2)^2+(-11)^2}=5\sqrt5\ut{m}\approx11.2\ut{m}
(j)θab=?\theta_{\vec a -\vec b}=? Ans=tan1(112)1.8[rad] \Ans=\tan^{-1}\(\frac{-11}{-2}\)\approx-1.8\ut{rad}
(k)ϕ(ba)(ab)\phi_{(\vec b-\vec a)|(\vec a-\vec b)} Ans=ϕ(ba)(ab)=θbaθab=tan1(112)tan1(112)=π[rad] \begin{aligned} \Ans =& \phi_{(\vec b-\vec a)|(\vec a-\vec b)}\\ =&\abs{\theta_{\vec b-\vec a}-\theta_{\vec a-\vec b}}\\ =&\abs{\tan^{-1}\(\frac{11}{2}\)-\tan^{-1}\(\frac{-11}{-2}\)}\\ =&\pi\ut{rad} \end{aligned}