10판/3. 벡터

3-5 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 8. 6. 17:00

{a1=3.66j^[m]a2:(1.83[m],π4)a3:(0.91[m],34π)\begin{cases} \vec a_1 = 3.66\hat j\ut{m}\\ \vec a_2:(1.83\ut{m},-\frac{\pi}{4})\\ \vec a_3:(0.91\ut{m},-\frac{3}{4}\pi)\\ \end{cases} a2=1.83cos(π4)i^+1.83sin(π4)j^=1.832i^1.832j^ \begin{aligned} \vec a_2 &= 1.83\cos\(-\frac{\pi}{4}\)\hat i+1.83\sin\(-\frac{\pi}{4}\)\hat j\\ &= \frac{1.83}{\sqrt{2}}\hat i-\frac{1.83}{\sqrt{2}}\hat j\\ \end{aligned} a3=0.91cos(34π)i^+0.91sin(34π)j^=0.912i^0.912j^ \begin{aligned} \vec a_3 &= 0.91\cos\(-\frac{3}{4}\pi\)\hat i+0.91\sin\(-\frac{3}{4}\pi\)\hat j\\ &= -\frac{0.91}{\sqrt{2}}\hat i-\frac{0.91}{\sqrt{2}}\hat j\\ \end{aligned} Σa=a1+a2+a3=(1.8320.912)i^+(3.661.8320.912)j^=23252i^+3661372100j^[m] \begin{aligned} \Sigma \vec a &= \vec a_1+\vec a_2+\vec a_3\\ &=\(\frac{1.83}{\sqrt{2}}-\frac{0.91}{\sqrt{2}}\)\hat i+\(3.66-\frac{1.83}{\sqrt{2}}-\frac{0.91}{\sqrt{2}}\)\hat j\\ &=\frac{23}{25\sqrt{2}}\hat i +\frac{366-137\sqrt{2}}{100} \hat j\ut{m}\\ \end{aligned}
(a)Σa=?\abs{\Sigma\vec a}=? Σa=(23252)2+(3661372100)2=878635014225000[m]3.39[m] \begin{aligned} \abs{\Sigma\vec a}&=\sqrt{\(\frac{23}{25\sqrt{2}}\)^2+\(\frac{366-137\sqrt{2}}{100}\)^2}\\ &=\frac{87863-50142 \sqrt{2}}{5000}\ut{m}\\ &\approx 3.39\ut{m} \end{aligned}
(b)θa=?\theta_a=? θa=tan1(axay)=tan1(366137210023252)=tan1(183213746)1.21[rad] \begin{aligned} \theta_a&=\tan^{-1}\(\frac{a_x}{a_y}\)\\ &=\tan^{-1}\(\frac{\frac{366-137\sqrt{2}}{100}}{\frac{23}{25\sqrt{2}}}\)\\ &=\tan^{-1}\(\frac{183\sqrt{2}-137}{46} \)\\ &\approx 1.21\ut{rad} \end{aligned}