$$ \begin{cases}
m&=10.0\ut{kg}\\
R&=0.400\ut{m}\\
r&=0.300\ut{m}\\
I&=0.600\ut{kg\cdot m^2}\\
\theta&=30.0\degree\\
d&=2.00\ut{m}\\
g&=9.80665\ut{m/s^2}
\end{cases} $$
$$ \begin{aligned}
-\Delta y&=d\sin\theta,\\
-\Delta \GE &= mg(-\Delta y)\\
&= mgd\sin\theta\\
&= 10g\taag1\\
\end{aligned} $$
$$ \put \begin{cases}
\RE : \text{Rotational Kinetic Energy}\\
\KE : \text{Translational Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\end{cases} $$
$$ \begin{aligned}
{v_\com}&=r\omega\\
{v_\com}^2&=r^2\omega^2\\
\frac{1}{2}m{v_\com}^2&=\frac{1}{2}mr^2\omega^2\\
&=\frac{mr^2}{I}\cdot\frac{1}{2}I\omega^2\\
\KE&=\frac{mr^2}{I}\RE\\
&=\frac{3}{2}\cdot \RE\\
\end{aligned} $$
$$\therefore \KE : \RE =3:2$$
$$ \begin{cases}
\KE&=\cfrac{3}{5}(\KE+\RE)\\
\RE&=\cfrac{2}{5}(\KE+\RE)\\
\end{cases} $$
$$\Sigma \Delta E=0,$$
$$\Delta \KE+\Delta \RE=-\Delta \GE,$$
$$ \begin{cases}
\KE_f&=\cfrac{3}{5}(-\Delta \GE)\\
\RE_f&=\cfrac{2}{5}(-\Delta \GE)\\
\end{cases} $$
$$ \begin{cases}
\KE_f&=\cfrac{3}{5}\cdot 10g\\
\RE_f&=\cfrac{2}{5}\cdot 10g\\
\end{cases} $$
$$ \begin{cases}
\KE_f&=6g\\
\RE_f&=4g\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
\RE_f&=4g\\
&=39.2266\ut{J}\\
&\approx 39.2\ut{J}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\KE_f&=6g\\
&=58.8399\ut{J}\\
&\approx 58.8\ut{J}\\
\end{aligned} $$
'11판 > 11. 굴림운동, 토크, 각운동량' 카테고리의 다른 글
11-6 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.15 |
---|---|
11-5 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.15 |
11-4 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.15 |
11-3 할리데이 11판 솔루션 일반물리학 (2) | 2024.05.15 |
11-2 할리데이 11판 솔루션 일반물리학 (1) | 2024.05.15 |