$$ \begin{cases}
k&=200\ut{N/m}\\
mg&=20\ut{N}\\
g&=9.80665\ut{m/s^2}
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\LE : \text{Elastic Potential Energy}\\
\end{cases} $$
$$ \begin{aligned}
\Delta \GE(y_f)&=\Delta(mgy)\\
&=mg \Delta y\\
&=mg (y_f-y_i)\\
&=mg y_f\\
&=20 y_f\taag 1\\
\end{aligned} $$
$$\Delta x=-\Delta y$$
$$x_f=-y_f$$
$$ \begin{aligned}
\Delta \LE(y_f)&=\Delta\(\frac{1}{2}kx^2\)\\
&=\frac{1}{2}k\Delta\(x^2\)\\
&=\frac{1}{2}k\({x_f}^2-{x_i}^2\)\\
&=\frac{1}{2}k{y_f}^2\\
&=100{y_f}^2\taag2\\
\end{aligned} $$
$$\Sigma \Delta E=0,$$
$$\Delta \KE+\Delta \GE+\Delta \LE=0$$
$$ \begin{aligned}
\Delta \KE(y_f)&=-\Delta \GE-\Delta \LE\\
&=-20y_f-100{y_f}^2\taag3\\
\end{aligned} $$
$$ \therefore \begin{cases}
\Delta \KE(-y)&=20y-100y^2\\
\Delta \GE(-y)&=-20 y\\
\Delta \LE(-y)&=100y^2\\
\end{cases} $$
$$\ab{a,b,c}$$
$$y=-5.0\ut{cm}=-0.05\ut{m}$$
$$ \begin{cases}
\Delta \KE &=\frac{3}{4}\ut{J}=0.75\ut{J}\\
\Delta \GE &=-1\ut{J}\\
\Delta \LE &=\frac{1}{4}\ut{J}=0.25\ut{J}\\
\end{cases} $$
$$\ab{d,e,f}$$
$$y=-10\ut{cm}=-0.1\ut{m}$$
$$ \begin{cases}
\Delta \KE&=1\ut{J}\\
\Delta \GE&=-2\ut{J}\\
\Delta \LE&=1\ut{J}\\
\end{cases} $$
$$\ab{g,h,i}$$
$$y=-15.0\ut{cm}=-0.15\ut{m}$$
$$ \begin{cases}
\Delta \KE&=\frac{3}{4}\ut{J}=0.75\ut{J}\\
\Delta \GE&=-3\ut{J}\\
\Delta \LE&=\frac{9}{4}\ut{J}=2.25\ut{J}\\
\end{cases} $$
$$\ab{j,k,l}$$
$$y=-20\ut{cm}=-0.20\ut{m}$$
$$ \begin{cases}
\Delta \KE&=0\\
\Delta \GE&=-4\ut{J}\\
\Delta \LE&=4\ut{J}\\
\end{cases} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-64 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.10 |
---|---|
8-63 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.10 |
8-61 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |
8-60 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |
8-59 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |