$$ \begin{cases}
F_1&=4.00\ut{N}\\
F_2&=4.00\ut{N},\theta_2&=50.0\degree\\
F_3&=10.0\ut{N},\theta_3&=35.0\degree\\
S&=2.50\ut{m}
\end{cases} $$
$$ \begin{cases}
\vec F_1&=-4\i\ut{N}\\
\vec F_2&=-4\sin50\degree\i-4\cos50\degree\j\ut{N}\\
\vec F_3&=10\cos35\degree\i+10\sin35\degree\j\ut{N}\\
\end{cases} $$
$$ \begin{aligned}
\theta_{F} &= \vec F_1+\vec F_2+\vec F_3\\
=&(-4-4\sin50\degree+10\cos35\degree)\i\\
&+(-4\cos50\degree+10\sin35\degree)\j\ut{N}\\
\end{aligned} $$
$$ \begin{aligned}
\theta_{\Sigma F} &=\theta_S\\
&=\tan^{-1}\frac{-4\cos50\degree+10\sin35\degree}{-4-4\sin50\degree+10\cos35\degree}\\
&=\tan ^{-1}\frac{2\sin 40\degree-5\sin35\degree}{2+2\cos40\degree-5\cos35\degree}
\end{aligned} $$
$$ \begin{aligned}
\vec S=&2.5\cos\(\tan ^{-1}\frac{2\sin 40\degree-5\sin35\degree}{2+2\cos40\degree-5\cos35\degree}\)\i\\
&+2.5\sin\(\tan ^{-1}\frac{2\sin 40\degree-5\sin35\degree}{2+2\cos40\degree-5\cos35\degree}\)\j\\
\end{aligned} $$
$$ \begin{aligned}
W_{F1}&=\vec F_1 \cdot \vec S\\
&\approx 3.3557687537820193\ut{J}\\
&\approx 3.36\ut{J}\\
\end{aligned} $$
$$ \begin{aligned}
W_{F2}&=\vec F_2 \cdot \vec S\\
&\approx -8.625809721004044\ut{J}\\
&\approx -8.63\ut{J}\\
\end{aligned} $$
$$ \begin{aligned}
W_{F3}&=\vec F_3 \cdot \vec S\\
&\approx 20.38012105272343\ut{J}\\
&\approx 20.4\ut{J}\\
\end{aligned} $$
'11판 > 7. 운동에너지와 일' 카테고리의 다른 글
7-17 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.13 |
---|---|
7-16 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.13 |
7-14 할리데이 11판 솔루션 일반물리학 (2) | 2024.03.12 |
7-13 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.12 |
7-12 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.12 |